
Mediterranean Youth Mathematical Championship (MYMC)
Rome, July 18, 2013

Morning round

WE1
(Filippo Calandri, Aritmetica, 1491)
There are two towers: one is 60 meters tall and the other is 80 meters tall; between one tower and 
the other there is a distance of 100 meters. On the ground there is a water fountain, found between 
the bases of the two towers. It is known that two birds, leaving simultaneously from the tops of the  
two towers and flying with the same speed, will reach the fountain at the same moment. What is the 
distance between the fountain and the shortest tower? 

Copy of the page of the 1491 book:
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Solution
The situation is represented by the following figure.

AE=x
602+x2=802+(100−x)2

x= 64.

Note: the point E can be found with ruler and compass, constructing the perpendicular bisector of 
the segment CD.

WE2
(Leonhard Euler, Anleitung zur Algebra, 1770)
Find two positive numbers, one the double of the other, such that if their product is added to their 
sum, the result is 90.

Solution
Let x and y be the two numbers,  y=2x. We get the equation 2x2+3x=90. The only positive solution 
is x=6 (so that y=12).

WE3
(Rafael Bombelli, L’algebra, 1572)
Find three integers greater than 100 such that the product of any two of the three numbers, increased 
by 1, is a square number.

Solution
One solution consists in the observation that the numbers  a−1,  a+1,  4a satisfy the statement (for 
every a).

WE4
How many ways can we fill the cells of the following table with the colors blue, red, and green

such that no two adjacent cells (horizontally or vertically) contain the same color?
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Solution
The answer is in 216=54∙2∙2 ways, for there are 54 ways of filling the following rectangular table:

The rectangular table can be filled in 54 ways because we can choose 3∙2=6 fillings of the two top 
leftmost cells, and for every choice we have 9 ways of filling the whole table. We illustrate the case 

B R

the others being similar (B, R, G stand for blue, red, green, respectively).
If we add G in the first row, then another G under B determines

B R G
G B R

but putting R under B we have the following three cases
B R G B R G B R G
R B R R G B R G R

If we add B in the first row, then putting G in the leftmost cell of the second row, we have two cases
B R B B R B
G B R G B G

but putting  R in the leftmost cell of the second row, we have three cases
B R B B R B B R B
R G R R B R R B G

WE5
We are given two quadrilaterals  ABCD and  EFGH, each having all internal angles smaller than 
180°, and with angle bisectors (half lines that divide the internal angles into two equal parts) which 
pairwise intersect at internal points of the quadrilateral. We know that, for the first quadrilateral, the 
measures of the internal angles at A and B are α and β, while for the second quadrilateral α and β are 
the  measures  of  the  internal  angles  at  E and  G (i.e.  non-consecutive  vertices).  Let  P be  the 
intersection point of the bisectors of the two angles at  C and  D,  and  θ the convex angle  CPD; 
furthermore, let Q be the intersection point of the bisectors of the two angles at F and H,  and φ the 
convex angle FQH. Then:

A)  θ = φ if and only if α and β are supplementary
B)  θ = φ if and only if α and β are complementary
C)  θ is always different from φ
D)  θ is always equal to φ
E)  θ = φ if and only if α = β

Solution
The answer is C).
For the first quadrilateral, the sum of the internal angles at C and D is 360° – (α + β) and we obtain 
θ = 180° – (360° – (α + β))/2 = (α + β)/2. Let us now suppose, without loss of generality, that α ≥β; 
for the quadrilateral FGHQ the angle at Q is 360° – φ and we have φ = β + (360° – (α + β))/2 and 
therefore θ = φ for (α + β)/2 = (β – α)/2 +180° i.e. only when α = 180°. But this contradicts our 
initial hypotheses.
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WE6
In the Cartesian plane the equation  ax2 − |ay2| + ab = 0 (where  a,  b are real numbers) defines a 
circle with its center at the origin and radius greater than 0 if and only if

A)  a < 0   and   b < 0
B)  a ≠ 0   and   b < 0
C)  a < 0   and   b > 0
D)  ab < 0
E)  ab > 0

Solution
The answer is A). For the coefficients of  x2 and y2  to be equal, a must be negative. The square of 
the radius is positive if and only if b is also negative.

WE7
Consider the following polyhedrons in the geometry of space: a cube, a convex prism with 8-sided 
bases, a convex pyramid with an 8-sided base (the bases of prism and pyramid are regular 8-gons).
All of the numbers written in the following table are correct, except for one; furthermore, one of the 
boxes is empty. Write the product of the missing number with the number that should substitute the 
incorrect number.

Polyhedron Maximum number of edges of 
the  polyhedron  which  lie  on 
pairwise skew lines (recall that 
two lines are said to be “skew” 
if  no  plane  contains  both  of 
them)

Maximum number  of sides 
of a polygon obtained as a 
plane  section  of  the 
polyhedron

cube 3 6
prism with 8-sided bases 3
pyramid with 8-sided base 3 9

Solution
Let ABCD and A’B’C’D’ be two opposite faces of the cube, with AA’, BB’, CC’, DD’ edges that are 
perpendicular to the bases.
Then the lines  AB,  CC’,  D’A’ are pairwise skew. On the other hand, each edge of the cube is 
parallel to three other edges, and therefore, however we choose four lines, two of them will be 
parallel.
There  exists  a  plane  which  intersects  all  the  faces  of  the cube:  for  example  the plane passing 
through all of the midpoints of the edges  AB, BC, CC’, C’D’, D’A’, A’A (in this case, the plane 
section is a regular hexagon).
In a prism, we can find at most three edges which lie on skew lines: one in each base and one lateral 
edge.
The answer in the empty box is 10: it comes from a plane which intersects all of the faces of the 
prism. For example, we can consider a plane which intersects all of the lateral edges and we can 
incline it in such a way as to also intersect the two bases.
In a pyramid, we can find at most 2 skew lines (the number in the table is incorrect): one edge from 
the base and one lateral edge, because every base edge is coplanar with the first edge chosen, and 
every lateral edge is coplanar with the second edge chosen.
The number 9 is correct: the situation is analogous with that of the prism.
The answer is 20.
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WE8
We have 2013 points (numbered in order from 1 to 2013) which are the vertices of a regular 2013-
agon. These vertices are divided into three groups: those from 1 to 671, those from 672 to 1342, and 
those from 1343 to 2013. What is the smallest number n such that, by choosing n points from each 
group, we can be certain that the points chosen include the vertices of an equilateral triangle?
 
Solution
The answer is 448.
Firstly, we note that each point a is the vertex of one and only one equilateral triangle, namely the 
triangle  whose  vertices  are  the  points  a,  a+671,  a+1342 (where  addition  is  performed  modulo 
2013). Therefore, with the given points we can obtain a total of  671 equilateral triangles. If we 
choose  448 points  from  each  group,  we  discard  671  −  448  =  223 points  from  each  group. 
Therefore, our choice of points in the first group leads us to discard 223 equilateral triangles, and in 
addition we will discard – at most – another 223 equilateral triangles for every choice of 448 points 
in  either  of the remaining two groups.  But as  223×3 = 669,  we are sure to have at  least  one 
remaining equilateral triangle (rather, we will have at least 2).
Finally, we show that n = 447 does not guarantee the presence of an equilateral triangle. In fact, we 
do not obtain any equilateral triangles by choosing the points from 1 to 447 in the first group, the 
points from 896 to 1342 in the second group, and finally, in the third group, the points from 1343 to 
1566 alongside the points from 1791 to 2013.

WE9
Let  n  be an odd integer between  90  and  100.  How many  n  are such that  4/n  is the sum of the 
reciprocals of two positive integers?

A)  1
B)  2
C)  3
D)  4
E)  5

Solution
The answer is D).
In fact, 4/91=1/35+1/65, 4/93=1/93+1/31, 4/95=1/30+1/114 and 4/99=1/45+1/55.
Now, if 4/97 were equal to 1/a + 1/b, with a and b positive integers, 4ab=97(a+b) would require 
that a or b be divisible by the prime number 97: let’s say that a=97c.
It would follow that 4cb=97c+b, from which c=b/(4b-97). But c≥1 would require that b≥(4b−97), 
and so b would have to satisfy b≤32.
Furthermore, positive c would require that 4b−97 be positive, meaning that the integer b would also 
have to satisfy b≥25.
For each of the integer values of b between 25 and 32, c=b/(4b−97) is never an integer: we arrive at 
a contradiction.
In general, we can prove that 4/n can be expressed in the desired form if and only if n has a prime 
factor congruent to 3 modulo 4.
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WE10
Given a triangle ABC, let N be a point on the side AB such that AN is one third of AB, and let M  be 
a point on the side  AC such that  AM is half  of  AC.  Connecting  N to  C and  M to  B with two 
segments, we then define P as the intersection point of these two segments. Calculate the fraction 
expressing the ratio between the area of the triangle ABC and that of the quadrilateral ANPM.

First s  olution  
The problem is affine, in the sense that the requested ratio is preserved by any affine transformation. 
So we can take the triangle we prefer, for instance a right isosceles triangle. Thus we assume that 
the angle at A is a right angle, and choose an appropriate Cartesian coordinate system, such as the 
one in the figure.

A=(0,0) , B=(0,1) , C=(1,0) , N=(0,1/3) , M=(1/2,0)

NC  :   x+3y=1
MB  :  2x+y=1
P=(2/5,1/5)

Area ABM = 1/4

Area BNP = 
1

2

2

3

2

5
= 2

15

Area ANPM = 
1

4
− 2

15
= 7

60
The requested ratio is 30/7.

Second solution
Draw the segment AP and consider the areas of the five triangles in which ABC is decomposed. Let 
us set: area AMP = area MCP = a  (these two triangles have congruent bases and the same height), 
area BPC = b, area APN = c ; then area NPB = 2c (the basis of the latter triangle is twice the basis 
of APN).
With some argument similar to the previous ones, we get: a+c+2c = a+b and 2c+b = 2(c+2a). We 
deduce b = 3c and b = 4a. It follows that area ABC = 2a+b+3c = 10a, while area AMPN = a+c =  
(7/3)a.  The ratio is 30/7.

Third   solution  
Let us recall Menelaus’ Theorem in plane geometry. With reference to the figure
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the  following  equality  holds: AF∙BD∙CE = –  FB∙DC∙EA.  This  equation  uses  signed lengths  of 
segments, in other words the length AB is taken to be positive or negative according to whether A is 
to the left or right of B in some fixed orientation of the line.

We  apply  Menelaus’  Theorem to  the  triangle  ABM, 
which is divided by the segment NC.
We have (the ratios are in absolute value)
AN

NB
× BP

PM
× MC

AC
=1

which gives us BP:PM=4, and therefore the height of 
the triangle  MPC is  1/5 that of the triangle  ABC, and 
the base is half that of the triangle ABC.

The area of the triangle MPC is therefore 1/10 that of the triangle ABC. We observe that the area of 
the quadrilateral ANPM is given by the difference between the area of the triangle ANC and that of 
the triangle MPC, which we have just calculated.
But the base AN of the triangle ANC is 1/3 of the base AB of the triangle ABC, while the heights are 
the same. Therefore, indicating with S the area of the triangle ABC, we have:

Area ANPM = S

3
− S

10
= 7

30
S
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