Laboratorio

COSTRUZIONE DI UNA PILA ELETTROCHIMICA

Note: al fine di consolidare concetti teorici importanti per comprendere il funzionamento delle celle fotovoltaiche viene proposta la seguente esperienza di laboratorio.

Richiami teorici

Le ossidoriduzioni consistono in un flusso di elettroni dall'elemento meno elettronegativo a quello più elettronegativo; tale flusso altro non è che *energia elettrica*. Se teniamo separate le due semireazioni in modo tale che il flusso compi un percorso esterno al sistema di reazione, è possibile trasformare l'energia in *lavoro*.

Il lavoro svolto dal flusso di elettroni si chiama f.e.m. (forza elettromotrice) o potenziale elettrico.

I sistemi che trasformano una redox in un potenziale si dicono celle elettrochimiche o pile elettrochimiche.

Una pila è formata da due elementi galvanici (**semicelle**) formati ognuno da una lamina metallica immersa in una soluzione salina dello stesso metallo.

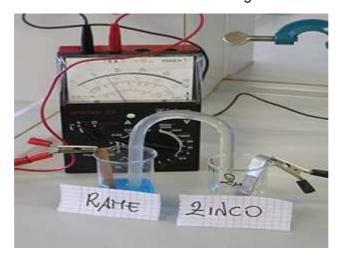
I due elementi sono collegati da un *ponte salino* (tubo ad U contenente una soluzione concentrata, ad es., di NH₄CI, KNO₃) che permette la migrazione degli ioni al fine di mantenere elettricamente neutre le soluzioni senza il completo mescolamento delle stesse; tale evenienza farebbe, infatti, sì che gli ioni possano scambiarsi direttamente per contatto gli elettroni senza generare alcuna f.e.m.. Il ponte salino può essere sostituito da un *setto poroso* con la stessa funzione.

Le due *lamine metalliche* sono collegate con fili elettrici ad un circuito esterno comprendente un utilizzatore, in genere un *voltmetro*. Nel circuito passeranno gli elettroni partendo dall'elettrodo che ne possiede di più, ovvero quello della semicella ove si ha l'ossidazione (**anodo** o **polo negativo**), per giungere all'elettrodo della semicella ove si ha la riduzione (**catodo** o **polo positivo**). Attraverso il voltmetro o il multimetro è possibile misurare la *f.e.m.* generata.

Quando il sistema raggiunge l'equilibrio, il processo ha termine.

Potenziale standard (E^0): si intende il potenziale di una redox che si svolge a 25 $^{\circ}$ C e a 1 atm. tra un elettrodo di un qualsiasi metallo in una soluzione 1 M di un suo sale ed un **elettrodo ad idrogeno**.

PROCEDIMENTO:


Si pongono in un becker ca. 100 mL di soluzione 0.1 M di *solfato di rame* immergendo la lamina di *rame*. In un secondo becker si pone una identica quantità di *solfato di zinco* sol. 0.1 M immergendo la laminetta di *zinco*. Si collegano con due fili di diverso colore la lamina di rame all'ingresso positivo del voltmetro e la lamina di zinco all'ingresso negativo.

Si riempie completamente il tubo ad U di soluzione concentrata di *cloruro di ammonio*, tappando le due estremità con due batuffoli di cotone; il tubo serve, come detto, da *ponte salino*. Si rovescia il ponte salino, controllando che vi sia continuità e si immergono i tubi nei due beckers. Se tutto è stato fatto correttamente, sul voltmetro si può osservare una **f.e.m.** di **1.1 volts** circa.

Detta f.e.m. è data dalla differenza tra i potenziali dei due elettrodi:

$$E = E^{0} (Cu^{2+}/Cu) - E^{0} (Zn^{2+}/Zn) = 0.34 - (-0.76) = 1.1 \text{ volts}$$

La reazione di ossidoriduzione che si è verificata è la seguente:

$$Zn \longrightarrow Zn^{2+/+} 2e$$
 $Cu^{2+/+} 2e \longrightarrow Cu$
 $Zn + Cu^{2+} \longrightarrow Zn^{2+} + Cu$

Lo *zinco* funziona da **anodo** (**polo negativo**) e, quindi si ossida consumandosi, mentre il *rame* funziona da **catodo** (**polo positivo**) riducendosi e, quindi, aumentando di volume.

Se si dispone di un amperometro, collegandolo al posto del voltmetro, è possibile misurare l'intensità della corrente.